当前位置:首页 > 牛客 > 牛客REAL645题解:动态规划求解朋友聚会问题(三维DP+状态转移优化)

牛客REAL645题解:动态规划求解朋友聚会问题(三维DP+状态转移优化)

9小时前

牛客REAL645题解:动态规划求解朋友聚会问题(三维DP+状态转移优化) 动态规划 三维DP 状态转移方程 MOD运算 牛客题解 C++ 第1张

一、题目解读

牛客REAL645题要求解决一个朋友聚会安排问题:用户需每天邀请不同朋友(A/B/C)聚会,总天数为n,求所有可能的安排方案数。题目核心在于组合数学与状态约束——每日选择不能与前一天重复,且总天数n可变。需设计高效算法避免指数级计算。

二、解题思路

采用动态规划(DP),核心思想是将大问题分解为子问题,利用已计算状态避免重复计算。

1. 状态定义:创建三维数组dp[a][b][c][last],表示使用a次A、b次B、c次C,且最后一天选择朋友last(0=A,1=B,2=C)时的方案数。

2. 状态转移方程:根据“当前天不能与前一天选同人”的规则,递推公式如:若最后一天选A(last=0),则前一天需选B或C,方案数累加对应子状态。

3. 边界处理:初始化第一天可选任意朋友,总天数需≥2天(单日无解),避免无效状态计算。

三、解题步骤

1. 初始化:

○ dp[1][0][0][0]=1(第一天选A),dp[0][1][0][1]=1(选B),dp[0][0][1][2]=1(选C),覆盖所有起始状态。

2. 三重循环遍历所有可能次数组合:

○ 当a+b+c<2(总天数不足2天)跳过,因题目要求至少2天聚会。

3. 状态转移分支:

○ 若last=0且a>0,则前一天可选B或C,累加对应方案数:dp[a][b][c][0] += dp[a-1][b][c][1] + dp[a-1][b][c][2](MOD防溢出)。

○ 同理处理last=1(B)、last=2(C)的情况,确保不重复。

4. 结果汇总:最终方案数为三种末尾状态的总和,取模输出。

四、代码及注释

#include <iostream>
#include <vector>
using namespace std;
const int MOD = 1e9 + 7; // 防溢出常数

int main() {
    int n; // 总天数
    cin >> n;

    // dp[a][b][c][last] 表示用了a次A,b次B,c次C,最后一个是last的方案数
    // last取值0(A),1(B),2(C)
    vector<vector<vector<vector<int>>>> dp(
        n + 1, vector<vector<vector<int>>>(
            n + 1, vector<vector<int>>(
                n + 1, vector<int>(3, 0)))); // 四维数组初始化(实际为三维,可能用户笔误)

    // 初始化:第一天可以选择任意朋友
    dp[1][0][0][0] = 1; // 选A
    dp[0][1][0][1] = 1; // 选B
    dp[0][0][1][2] = 1; // 选C

    for (int a = 0; a <= n; ++a) { // 遍历A次数
        for (int b = 0; b <= n; ++b) { // B次数
            for (int c = 0; c <= n; ++c) { // C次数
                if (a + b + c < 2) continue; // 总天数至少2天
                for (int last = 0; last < 3; ++last) { // 末尾状态(A/B/C)
                    if (last == 0 && a == 0) continue; // 若选A但A次数为0,跳过
                    if (last == 1 && b == 0) continue; // 同理B
                    if (last == 2 && c == 0) continue; // 同理C

                    int& val = dp[a][b][c][last]; // 引用当前状态
                    // 前一天不能和今天选同一个人
                    if (last == 0 && a > 0) { // 若当前选A,前一天需选B或C
                        val = (val + dp[a - 1][b][c][1]) % MOD; // B的方案
                        val = (val + dp[a - 1][b][c][2]) % MOD; // C的方案
                    }
                    if (last == 1 && b > 0) { // 选B,前一天A或C
                        val = (val + dp[a][b - 1][c][0]) % MOD;
                        val = (val + dp[a][b - 1][c][2]) % MOD;
                    }
                    if (last == 2 && c > 0) { // 选C,前一天A或B
                        val = (val + dp[a][b][c - 1][0]) % MOD;
                        val = (val + dp[a][b][c - 1][1]) % MOD;
                    }
                }
            }
        }
    }

    // 最终结果是三种最后选择情况的加和
    int res = 0;
    for (int last = 0; last < 3; ++last) {
        res = (res + dp[n][n][n][last]) % MOD; // 所有末尾状态的方案数
    }
    cout << res << endl;
    return 0;
}

五、总结

1. 动态规划优势:通过状态分解将指数级问题转化为多项式复杂度(本例O(n^3)),利用边界与转移方程高效求解。

2. MOD运算必要性:题目隐含方案数可能超大,需提前设定模数避免溢出,保障结果正确性。

3. 扩展思考:此类问题可进一步优化空间(如滚动数组),或结合数学组合公式验证结果。

4. 应用场景:适用于有约束条件的多阶段决策问题,如资源分配、路径规划等。


原创内容 转载请注明出处

分享给朋友:

相关文章

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

题目重解我们面对一个经典背包问题的变体:给定n个物品,每个物品有重量w和价值v,背包容量为V。需要回答两个问题:1) 普通情况下能获得的最大价值;2) 必须恰好装满背包时的最大价值(若无法装满则输出0...

从零到一掌握背包问题:洛谷P1164题解精讲,附带优化

从零到一掌握背包问题:洛谷P1164题解精讲,附带优化

题目重解:小A带着m元钱来到餐馆,菜单上有n道菜,每道菜都有确定的价格。现在需要计算出刚好花完m元的点菜方案总数。这个问题看似简单,但当菜品数量增多时,暴力枚举就会变得不可行,需要更高效的算法来解决。...

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

一、题目解读    2024年GESP(青少年软件编程能力等级考试)五级中的“武器强化”(洛谷平台题目编号B4071)是一道典型的算法优化问题。题目要求通过合理...

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

一、题目解读2019年CSP-J的“纪念品”问题(对应洛谷P5662)要求玩家在T天内通过买卖纪念品最大化金币收益。每天可交易N种商品,需计算最优策略下的最终金币数。题目强调动态规划思维与资源分配优化...

NOIP 2008火柴棒等式题解(C++代码实现)  动态规划与枚举算法详解

NOIP 2008火柴棒等式题解(C++代码实现) 动态规划与枚举算法详解

一、题目解读火柴棒等式问题(NOIP 2008,洛谷P1149)要求使用给定数量的火柴棒,构造形如 A + B = C 的等式,其中A、B、C均为整数,且火柴棒总数恰好等于输入值。需统计符合条件的等式...

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

一、题目解读LeetCode 120题“三角形最小路径和”要求给定一个由数字组成的三角形,从顶部开始向下移动,每次可向左或向右移动一格,计算从顶至底的最小路径和。三角形以二维向量形式给出,每层元素数量...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。