当前位置:首页 > GESP > 2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2天前

2024年GESP五级武器强化(洛谷B4071)解题代码C++版 GESP五级 武器强化 洛谷B4071 动态规划 解题代码 第1张

一、题目解读

    2024年GESP(青少年软件编程能力等级考试)五级中的“武器强化”(洛谷平台题目编号B4071)是一道典型的算法优化问题。题目要求通过合理分配材料,最小化多件武器的修改总成本。核心难点在于如何高效处理武器适配材料的分配策略,涉及动态规划贪心算法的结合。

二、解题思路

采用“枚举+贪心”策略:

    1. 材料计数与排序预处理:统计每件武器初始适配材料数,并对每件武器的修改花费按升序排序,为后续贪心选择做准备。

    2. 关键优化:通过枚举第一件武器最终需要的材料数量k,计算其余武器可贡献的材料,并优先选择修改花费最小的材料进行分配。

    3. 备选池机制:无法直接分配时,将剩余材料存入备选池,按需取出,确保总成本最小化。

三、解题步骤

    1. 输入与初始化:读取武器数量n和材料总数m,建立材料计数数组cnt和修改花费二维数组cost。

    2. 数据预处理:对每件武器的修改花费排序(sort())。

    3. 核心循环:

        枚举第一件武器的目标材料数k,计算剩余需求need。

        遍历其他武器,优先分配最便宜的修改材料,若材料不足则存入备选池。

        对备选池排序后补充剩余需求,更新总成本。

    4. 结果输出:取所有枚举情况中的最小总成本。

四、代码与注释

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
    int n, m;
    cin >> n >> m; // 输入武器数量和材料总数
    
    vector<int> cnt(n+1, 0); // 各武器适配材料计数
    vector<vector<int>> cost(n+1); // 各武器修改花费
    
    // 读取输入数据
    for (int i = 0; i < m; i++) {
        int p, c;
        cin >> p >> c; // p为武器编号,c为修改花费
        cnt[p]++;
        cost[p].push_back(c);
    }
    
    // 对每个武器的修改花费排序(升序)
    for (int i = 1; i <= n; i++) {
        sort(cost[i].begin(), cost[i].end());
    }
    
    long long res = 1e18; // 初始化结果(最大值)
    
    // 枚举第1种武器最终需要的适配材料数量k
    for (int k = max(1, cnt[1]); k <= m; k++) {
        long long sum = 0;
        int need = k - cnt[1];
        vector<int> pool;
        
        // 处理其他武器
        for (int i = 2; i <= n; i++) {
            int can_take = max(0, cnt[i] - (k - 1)); // 可贡献的材料数
            // 优先取修改花费最小的can_take个
            for (int j = 0; j < can_take; j++) {
                sum += cost[i][j];
                need--;
            }
            // 剩余材料存入备选池
            for (int j = can_take; j < cost[i].size(); j++) {
                pool.push_back(cost[i][j]);
            }
        }
        
        // 若还需更多材料
        if (need > 0) {
            if (pool.size() < need) continue; // 无法满足,跳过当前枚举
            sort(pool.begin(), pool.end());
            for (int i = 0; i < need; i++) {
                sum += pool[i];
            }
        }
        
        res = min(res, sum); // 更新最小总成本
    }
    
    cout << res << endl;
    return 0;
}

五、总结

该解法利用排序与贪心思想,通过枚举关键变量(第一件武器的目标材料数)来降低时间复杂度。核心优化点在于:

    1. 预处理排序减少后续选择复杂度;

    2. 备选池动态调整确保材料分配的最优性;

    3. 枚举范围限制在合理区间,避免无效计算。

此思路对同类资源分配问题具有通用性,适合算法竞赛与编程能力提升学习。



原创内容 转载请注明出处

分享给朋友:

相关文章

力扣53题:贪心策略与动态规划的完美联姻 三行代码映射算法精髓

力扣53题:贪心策略与动态规划的完美联姻 三行代码映射算法精髓

题目理解在数字的海洋中寻找最具价值的珍珠链:当我们面对一个可能包含正负数的数组时,寻找连续子数组的和最大值就像在波动的股票曲线中捕捉最佳投资时段。问题的核心在于如何处理可能降低总和的负值元素——是忍痛...

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

一、题目解读小杨买饮料是GESP 2023年六级认证考试中的一道经典动态规划题目,考察学生对背包问题的理解和应用能力。题目描述小杨需要购买n种饮料,每种饮料有特定的体积w和价格v,他要在不超过容量l的...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。