当前位置:首页 > 力扣 > 力扣912排序题终极解法:递归分割 + 双指针合并详解

力扣912排序题终极解法:递归分割 + 双指针合并详解

2个月前 (05-12)

题目解读

给定一个整数数组,要求将其按升序排列并返回。题目通常隐含对算法时间复杂度的要求,理想情况下需实现 O(n log n) 的时间复杂度。本题看似简单,但需要选择合适的排序算法(如归并排序、快速排序等),且需避免直接调用语言内置的排序函数。提供的代码通过归并排序的分治思想解决了这一问题,通过递归分割数组并合并有序子数组完成排序。


力扣912排序题终极解法:递归分割 + 双指针合并详解 C++ 算法 力扣 数组 归并排序 双指针 第1张


解题思路与过程

采用经典的归并排序算法实现排序,主要分为以下步骤:

1.递归分割数组‌:将数组不断二分,直到子数组长度为1(即递归终止条件 l == r)。

2.合并有序子数组‌:将两个已排序的子数组合并为一个有序数组。合并时使用双指针遍历左右子数组的元素,依次选择较小的值存入临时数组 tmp,最终将 tmp 的结果覆盖原数组的对应区间。

3.临时数组的利用‌:在合并过程中,通过全局临时数组 tmp[50000] 保存合并结果,避免多次动态内存分配


代码:

class Solution {  
public:  
    int tmp[50000];  // 全局临时数组,用于合并过程中的中间存储  
    void mysort(vector<int>& nums, int l, int r) {  
        if (l == r) {  // 递归终止条件:子数组长度为1  
            return;  
        }  
        int mid = (l + r) / 2;  
          
        // 递归分割左半部分  
        mysort(nums, l, mid);  
        // 递归分割右半部分  
        mysort(nums, mid + 1, r);  
          
        int index = l;    // 合并结果的起始位置  
        int lnow = l;     // 左子数组的指针  
        int rnow = mid + 1;  // 右子数组的指针  
          
        // 合并左右子数组  
        while (lnow <= mid || rnow <= r) {  
            if (rnow > r) {  // 右子数组已遍历完,直接填充左子数组剩余元素  
                tmp[index] = nums[lnow];  
                lnow++;  
                index++;  
            } else if (lnow > mid) {  // 左子数组已遍历完,填充右子数组剩余元素  
                tmp[index] = nums[rnow];  
                rnow++;  
                index++;  
            } else {  
                // 选择左右子数组中较小者放入临时数组  
                tmp[index] = min(nums[lnow], nums[rnow]);  
                if (nums[lnow] < nums[rnow]) {  
                    lnow++;  
                } else {  
                    rnow++;  
                }  
                index++;  
            }  
        }  
        // 将临时数组结果覆盖到原数组  
        for (int i = l; i <= r; i++) {  
            nums[i] = tmp[i];  
        }  
    }  
      
    vector<int> sortArray(vector<int>& nums) {  
        mysort(nums, 0, nums.size() - 1);  
        return nums;  
    }  
};


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣第92题:三步定位 精准反转链表指定区间

力扣第92题:三步定位 精准反转链表指定区间

题目解读给定一个单链表和两个整数left与right,要求将链表中从第left个节点到第right个节点的部分进行反转,而保持其他部分不变。例如,对于链表1→2→3→4→5,left=2,right=...

力扣540题:线性扫描法如何高效定位唯一数

力扣540题:线性扫描法如何高效定位唯一数

题目重解一个严格递增的有序数组中,除某个元素外,其余每个元素均出现两次。这个看似简单的条件背后隐藏着巧妙的规律——单一元素会打破数组的"成对对称性"。题目要求以O(log n)时间...

标题:洛谷B3617题解析:八进制转十六进制算法实现与优化(附AC100代码)

标题:洛谷B3617题解析:八进制转十六进制算法实现与优化(附AC100代码)

一、题目解读洛谷B3617题要求将输入的八进制字符串转换为十六进制表示。题目需处理大数场景,且对输入合法性有明确限制(长度不超过1000,仅包含0-7字符)。由于八进制与十六进制无法直接转换,需借助十...

牛客14496题解:括号最大深度问题(栈思想与代码优化)

牛客14496题解:括号最大深度问题(栈思想与代码优化)

一、题目解读牛客14496题要求计算给定括号字符串中的最大深度。例如,对于字符串 "(()())",最大深度为2。题目考察对括号嵌套结构的理解,以及如何通过编程找到最深嵌套层次。二...

【洛谷1184题解析】用C++高效解决地点匹配问题(附代码与解题思路)

【洛谷1184题解析】用C++高效解决地点匹配问题(附代码与解题思路)

一、题目解读洛谷1184题要求处理一组地点列表与行程记录,统计其中匹配的天数。题目难点在于高效处理带有空格的字符串输入,以及快速判断每日行程是否在高手可去地点集合中。需要兼顾输入格式解析与算法效率。二...

牛客NC67题解:汉诺塔递归算法与解题步骤

牛客NC67题解:汉诺塔递归算法与解题步骤

一、题目解读牛客NC67题要求解决汉诺塔问题,这是一个经典的递归算法题目。题目给定整数n,代表汉诺塔中的盘子数量,需要输出将n个盘子从起始柱移动到目标柱的所有步骤。汉诺塔问题规则为:每次只能移动一个盘...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。