当前位置:首页 > 力扣 > 力扣1137题:动态规划解泰波那契数 高效求解第N项的秘密

力扣1137题:动态规划解泰波那契数 高效求解第N项的秘密

2个月前 (05-20)

力扣1137题:动态规划解泰波那契数 高效求解第N项的秘密 动态规划 泰波那契数列 递推 数组 算法 C++ 力扣 第1张

一:重新解读题目

泰波那契数列是一个充满数学趣味的递推序列:从第3项开始,每个数均为前三个数的和(即Tₙ₊₃ = Tₙ + Tₙ₊₁ + Tₙ₊₂)。当给定整数n时,需要高效计算出第n项的值。面对此类递推问题,传统的递归方法可能因重复计算导致效率低下,因此动态规划成为破解的关键。

二:解题思路与过程

动态规划的核心在于“以空间换时间”:通过存储已计算出的中间结果,避免重复递归。代码中首先初始化数组dp,前3项分别赋值0、1、1(符合数列定义)。随后从第4项开始循环,每次通过dp[i] = dp[i-1] + dp[i-2] + dp[i-3]更新当前值,直至计算出第n项。此过程严格遵循递推公式,且因数组的有序访问,时间复杂度降至O(n),远优于递归的指数级复杂度。

三:带注释的代码解析

class Solution {  
public:  
    int tribonacci(int n) {  
        // 创建固定长度数组(因题目n≤37,故无需动态分配)  
        int dp[38];  
        // 初始化前3项(边界条件)  
        dp[0] = 0;  
        dp[1] = 1;  
        dp[2] = 1;  
        // 从第3项开始递推计算  
        for (int i = 3; i <= n; i++) {  
            // 利用数组直接访问历史值,完成三步求和  
            dp[i] = dp[i-1] + dp[i-2] + dp[i-3];  
        }  
        // 返回目标项的结果  
        return dp[n];  
    }  
};


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣第1984题精解:如何通过排序将时间复杂度优化到O(n log n)?

力扣第1984题精解:如何通过排序将时间复杂度优化到O(n log n)?

题目解读给定一个整数数组和一个整数 k,需要找到所有大小为 k 的子数组中最大值与最小值的差值的最小值。例如,数组 [9,4,1,7] 中若 ...

力扣70题:告别暴力递归!从零实现记忆化搜索解法

力扣70题:告别暴力递归!从零实现记忆化搜索解法

题意解析:想象你站在楼梯底部,面前有n级台阶。每次你可以选择跨1级或2级台阶,最终到达顶端的路径有多少种不同的走法?这个问题本质上是在探索分叉决策的叠加效果——当我们把每个台阶处的选择看作二叉树的分支...

力扣198.打家劫舍|动态规划解法中的特殊边界处理

力扣198.打家劫舍|动态规划解法中的特殊边界处理

题意解析:在排列成直线的房屋群中,每个房屋藏有价值不同的财物。小偷不能连续抢劫相邻的两间房屋,否则会触发警报。我们需要设计一套抢劫策略,使得在不触发警报的前提下,能够获取的最大财物总和。这个问题本质上...

70.爬楼梯|三步破解动态规划核心奥秘

70.爬楼梯|三步破解动态规划核心奥秘

题意新解:站在楼梯底仰望n级台阶,每步可选1或2阶,最终的路径组合犹如斐波那契数列般展开。比如到达第3阶的路径可由第1阶跨两步,或第2阶跨一步构成,这种递推规律揭示了两两相邻状态间的紧密关联。思路解析...

力扣1221:一次扫描解决分割平衡字符串 时间O(n)空间O(1)

力扣1221:一次扫描解决分割平衡字符串 时间O(n)空间O(1)

题目重解给定一个仅包含'L'和'R'的字符串,要求将其分割成尽可能多的子串,且每个子串中'L'和'R'的数量相等。例如输入"R...

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

一、题目解读    2024年GESP(青少年软件编程能力等级考试)五级中的“武器强化”(洛谷平台题目编号B4071)是一道典型的算法优化问题。题目要求通过合理...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。