当前位置:首页 > 力扣 > 力扣1649题解:利用树状数组与离散化创建有序数组

力扣1649题解:利用树状数组与离散化创建有序数组

9小时前

力扣1649题解:利用树状数组与离散化创建有序数组 力扣题解 树状数组 离散化 C++ 第1张

一、题目解读

力扣1649题要求计算将无序数组转化为有序数组所需的最小代价,每次插入元素的代价为两侧比它大或小的元素数量中的较小值。题目核心在于高效统计元素插入前后的相对位置关系,需要设计一种支持动态更新与区间查询的数据结构

二、解题思路

采用离散化 + 树状数组(Fenwick Tree)的解决方案。首先通过离散化将原数组映射到索引范围[1, n],消除数值差异带来的计算复杂度。随后利用状数组维护有序序列的统计信息:通过查询前缀和快速获取小于/等于目标值的元素数量,进而推导出插入代价。该思路巧妙将数值比较转化为索引操作,大幅降低时间复杂度。

三、解题步骤

1. 离散化处理:对原数组排序并去重,生成有序列表sorted,每个元素num通过lower_bound映射为排名rank(即离散化索引)。

2. 初始化树状数组:基于sorted长度构建FenwickTree,用于维护累计计数。

3. 循环处理每个元素:

○ 查询小于当前值的元素数量less = ft.query(rank-1),小于等于的数量lessEqual = ft.query(rank)。

○ 计算当前元素的出现次数same = lessEqual - less,大于当前值的数量greater = 总数 - lessEqual。

○ 代价取两侧较小值:min(less, greater),累加总代价并取模防溢出。

○ 更新树状数组:ft.update(rank, 1)记录当前元素插入。

4. 返回总代价:最终累加值即为最小插入代价。

四、代码与注释

class FenwickTree {
private:
    vector<int> tree;
public:
    FenwickTree(int size) : tree(size + 1) {} // 构造树状数组(多1位防止索引越界)
    
    void update(int index, int delta) {
        while (index < tree.size()) { // 从index开始向上更新区间和
            tree[index] += delta;
            index += index & -index; // 二进制最低位+1跳跃
        }
    }
    
    int query(int index) {
        int sum = 0;
        while (index > 0) { // 从index开始向下累加前缀和
            sum += tree[index];
            index -= index & -index; // 二进制最低位清零跳跃
        }
        return sum;
    }
};

class Solution {
public:
    int createSortedArray(vector<int>& instructions) {
        const int MOD = 1e9 + 7; // 防止整数溢出
        // 离散化:排序去重生成有序映射列表
        vector<int> sorted = instructions;
        sort(sorted.begin(), sorted.end());
        sorted.erase(unique(sorted.begin(), sorted.end()), sorted.end());
        
        FenwickTree ft(sorted.size());
        int totalCost = 0;
        
        for (int num : instructions) {
            // 获取离散化后的排名(索引+1,因树状数组从1开始)
            int rank = lower_bound(sorted.begin(), sorted.end(), num) - sorted.begin() + 1;
            // 统计小于当前值的元素数
            int less = ft.query(rank - 1);
            // 统计小于等于当前值的元素数
            int lessEqual = ft.query(rank);
            // 当前元素出现次数
            int same = lessEqual - less;
            // 大于当前值的元素数
            int greater = ft.query(sorted.size()) - lessEqual;
            
            // 代价取两侧较小值,累加并取模
            int cost = min(less, greater);
            totalCost = (totalCost + cost) % MOD;
            
            // 更新树状数组计数
            ft.update(rank, 1);
        }
        
        return totalCost;
    }
};

五、总结

该解法巧妙结合离散化与树状数组,将数值操作转化为索引统计,规避了暴力排序或复杂比较。核心优化点:

1. 离散化将任意数值映射到固定范围,降低空间与时间复杂度。

2. 树状数组支持O(logn)的区间更新与查询,完美契合动态统计需求。

3. 利用前缀和推导元素两侧数量关系,避免重复计算。

此思路为处理动态有序序列统计问题提供了高效模板,适用于类似区间查询与更新的场景。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣第71题:用栈轻松解决Unix路径简化问题

力扣第71题:用栈轻松解决Unix路径简化问题

题目解读:在Unix风格的文件系统中,我们经常需要处理各种复杂的路径表示。给定一个绝对路径字符串,我们需要将其转换为最简化的规范路径。规范路径要求:路径始终以斜杠'/'开头;两个目录名...

力扣965题深度解析:单值二叉树的判断技巧

力扣965题深度解析:单值二叉树的判断技巧

重新解读题目 判断一棵二叉树是否为“单值二叉树”,即所有节点的值是否完全相同。题目看似简单,实则考验对树结构递归特性的理解。若一棵树的所有节点值相同,其必然满足:根节点与左右子树的值一致,且...

手搓顺序表类代码注释与详解:从零实现动态数组(新手教程)

一、简介和特点顺序表(Sequential List)是数据结构中基础的一种线性表,其特点是将数据元素存储在连续的内存空间中。通过数组实现,支持随机访问(即通过索引直接访问元素),适用于频繁随机读取的...

牛客14496题解:括号最大深度问题(栈思想与代码优化)

牛客14496题解:括号最大深度问题(栈思想与代码优化)

一、题目解读牛客14496题要求计算给定括号字符串中的最大深度。例如,对于字符串 "(()())",最大深度为2。题目考察对括号嵌套结构的理解,以及如何通过编程找到最深嵌套层次。二...

牛客NC67题解:汉诺塔递归算法与解题步骤

牛客NC67题解:汉诺塔递归算法与解题步骤

一、题目解读牛客NC67题要求解决汉诺塔问题,这是一个经典的递归算法题目。题目给定整数n,代表汉诺塔中的盘子数量,需要输出将n个盘子从起始柱移动到目标柱的所有步骤。汉诺塔问题规则为:每次只能移动一个盘...

【力扣2846题】图论+二进制提升:高效解决连通性问题(附C++代码)

【力扣2846题】图论+二进制提升:高效解决连通性问题(附C++代码)

一、题目解读力扣2846题要求解决一个基于图连通性的操作优化问题。给定一个无向图,包含边权重,以及一系列查询,每个查询询问两点间路径的最小操作次数。题目关键在于高效计算路径上权重分布的统计信息,并转化...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。