当前位置:首页 > 牛客 > 牛客4469题解:位运算表达式的动态规划求解方案(C++代码详解)

牛客4469题解:位运算表达式的动态规划求解方案(C++代码详解)

3个月前 (07-02)

牛客4469题解:位运算表达式的动态规划求解方案(C++代码详解)  位运算表达式 动态规划 区间DP MOD运算 第1张

一、题目解读

牛客网4469题要求计算给定位运算表达式(由'0'、'1'与'&'、'|'、'^'运算符组成)得到特定结果(0或1)的不同组合方案数。题目核心在于处理位运算的逻辑组合,需高效算法统计所有可行路径。

二、解题思路

采用动态规划(Dynamic Programming)策略,结合区间DP(Interval DP)解决。首先将表达式分离为数字和运算符序列,再利用三维DP数组记录区间结果,通过状态转移方程计算组合方案。关键思路:

1. 分离数字与运算符,避免直接解析表达式复杂度。

2. 设计三维DP数组dp[i][j][k](区间i到j结果为k的方案数),利用区间划分降低重复计算。

3. 通过运算符分类讨论,递归组合子区间结果。

三、解题步骤

1. 预处理: 遍历表达式,分离数字存入nums,运算符存入ops,避免字符串解析开销。

2. 初始化DP: 单个数字直接赋值(dp[i][i][num[i]] = 1)。

3. 区间DP迭代

○ 外层循环控制区间长度(从2开始,处理多数字组合)。

○ 内层循环遍历区间起点、分割点,计算子区间组合。

○ 通过compute函数根据运算符计算最终结果,更新DP值(取模防溢出)。

4. 最终结果:dp[0][n-1][目标结果]。

四、代码与注释

class Expression {
  public:
    const int MOD = 10007;  // 结果取模防溢出
    int countWays(string exp, int len, int ret) {
        // 分离数字和运算符
        vector<int> nums;  // 存储数字
        vector<char> ops;  // 存储运算符
        for (int i = 0; i < len; ) {
            if (exp[i] == '0' || exp[i] == '1') {
                nums.push_back(exp[i] - '0');  // 字符转数字
                i++;
            } else {
                ops.push_back(exp[i]);  // 记录运算符
                i++;
            }
        }

        int n = nums.size();
        if (n == 0) return 0;  // 空表达式特判

        // dp[i][j][0/1]表示区间i到j结果为0/1的方案数
        vector<vector<vector<int>>> dp(n, vector<vector<int>>(n, vector<int>(2, 0)));

        // 初始化单个数字的情况
        for (int i = 0; i < n; i++) {
            dp[i][i][nums[i]] = 1;  // 单个数字本身结果
        }

        // 区间DP
        for (int l = 2; l <= n; l++) {  // 区间长度
            for (int i = 0; i + l - 1 < n; i++) {  // 区间起点
                int j = i + l - 1;  // 区间终点
                for (int k = i; k < j; k++) {  // 分割点
                    char op = ops[k];
                    // 计算左右子区间的组合
                    for (int left = 0; left <= 1; left++) {
                        for (int right = 0; right <= 1; right++) {
                            int res = compute(left, right, op);  // 运算符结果
                            dp[i][j][res] = (dp[i][j][res] + dp[i][k][left] * dp[k + 1][j][right]) % MOD;  // 状态转移
                        }
                    }
                }
            }
        }

        return dp[0][n - 1][ret];
    }

    int compute(int a, int b, char op) {
        switch (op) {
            case '&': return a & b;  // 按位与
            case '|': return a | b;  // 按位或
            case '^': return a ^ b;  // 按位异或
            default: return 0;       // 非法运算符处理
        }
    }
};

五、总结

本解法通过区间DP将位运算组合问题转化为状态转移优化,时间复杂度O(N^3),空间复杂度O(N^3),适用于中等规模数据。关键点:

1. 预处理分离数字减少计算量。

2. 三维DP数组设计避免重复子问题。

3. 取模操作保障结果正确性。

掌握此类动态规划思维对解决表达式类算法题有重要启发。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣1137题:动态规划解泰波那契数 高效求解第N项的秘密

力扣1137题:动态规划解泰波那契数 高效求解第N项的秘密

一:重新解读题目泰波那契数列是一个充满数学趣味的递推序列:从第3项开始,每个数均为前三个数的和(即Tₙ₊₃ = Tₙ + Tₙ₊₁ + Tₙ₊₂)。当给定整数n时,需要高效计算出第n项的值。面对此类递...

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

一、题目解读2019年CSP-J的“纪念品”问题(对应洛谷P5662)要求玩家在T天内通过买卖纪念品最大化金币收益。每天可交易N种商品,需计算最优策略下的最终金币数。题目强调动态规划思维与资源分配优化...

NOIP 2008火柴棒等式题解(C++代码实现)  动态规划与枚举算法详解

NOIP 2008火柴棒等式题解(C++代码实现) 动态规划与枚举算法详解

一、题目解读火柴棒等式问题(NOIP 2008,洛谷P1149)要求使用给定数量的火柴棒,构造形如 A + B = C 的等式,其中A、B、C均为整数,且火柴棒总数恰好等于输入值。需统计符合条件的等式...

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

LeetCode 120题三角形最小路径和最优解法:动态规划详解与代码实现

一、题目解读LeetCode 120题“三角形最小路径和”要求给定一个由数字组成的三角形,从顶部开始向下移动,每次可向左或向右移动一格,计算从顶至底的最小路径和。三角形以二维向量形式给出,每层元素数量...

洛谷P4551题解题报告:图论与Trie树优化异或路径问题的实战解析

洛谷P4551题解题报告:图论与Trie树优化异或路径问题的实战解析

一、题目解读洛谷P4551题要求在一个无向图中,寻找任意两点路径权值异或后的最大值。题目输入为图的边信息(点数n和n-1条边),每条边包含起点、终点及权值。需输出所有路径中权值异或的最大值。问题核心在...

CSP-J 2019公交换乘题解析:基于队列优化的动态规划代码详解

CSP-J 2019公交换乘题解析:基于队列优化的动态规划代码详解

一、题目解读CSP-J 2019年的“公交换乘”题目(洛谷P5661)要求模拟地铁与公交交替出行的费用计算。题目核心在于地铁消费会产生优惠券,而公交可在45分钟内使用优惠券抵扣车费。需要处理n条出行记...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。