当前位置:首页 > 入门组 > 洛谷P1022题(2000年NOIP普及组):用C++编写一元一次方程计算器

洛谷P1022题(2000年NOIP普及组):用C++编写一元一次方程计算器

4小时前

洛谷P1022题(2000年NOIP普及组):用C++编写一元一次方程计算器 洛谷题解 一元一次方程 C++ NOIP 普及组 字符串 第1张

一、题目解读

洛谷P1022题要求编写程序解一元一次方程,其中a、b、c、d为整数,x为未知数。题目输入包含一个方程字符串,输出需解析并计算x的值,结果保留三位小数。该问题考验对字符串处理的逻辑拆解与数学方程的转换能力。

二、解题思路

遍历方程字符串,通过判断字符类型(数字、字母、符号)动态更新系数与常数项。关键逻辑在于维护三个变量:符号标志(sign)记录当前运算符号,边标志(side)区分等式左右两侧,以及临时数字存储(num)。当遇到字母时,将num与sign、side相乘计入系数;遇到等号时切换边标志,最终通过系数与常数项比值计算解。

三、解题步骤

1. 初始化变量:创建系数(coefficient)、常数(constant)、符号(sign=1)、边(side=1)、临时数字(num)及数字标记(hasNum)。

2. 循环遍历方程:

    若字符为数字:更新num并标记hasNum。

    若字符为字母:将num计入系数(若hasNum为假,默认系数为1),重置num。

    若字符为符号/等号:

        处理hasNum中的常数项。

        更新符号(+/-)或切换边标志。

3. 收尾处理:检查末尾是否有未处理的常数项。

4. 计算解:通过constant / coefficient得出x,并格式化输出三位小数。

四、代码与注释

#include <iostream>
#include <string>
#include <iomanip>
using namespace std;

int main() {
    string equation;
    cin >> equation; // 读取方程字符串

    char variable; // 存储未知数字母
    double coefficient = 0; // 系数总和
    double constant = 0; // 常数总和
    int sign = 1; // 当前符号,1表示正,-1表示负
    int side = 1; // 当前所在边,1表示左边,-1表示右边
    int num = 0; // 临时存储数字
    bool hasNum = false; // 标记是否有数字待处理

    for (int i = 0; i < equation.size(); i++) {
        char c = equation[i];
        
        if (isdigit(c)) { // 如果是数字
            num = num * 10 + (c - '0');
            hasNum = true;
        } else if (isalpha(c)) { // 如果是字母(未知数)
            variable = c;
            if (!hasNum) num = 1; // 如果没有数字,系数默认为1
            coefficient += num * sign * side;
            num = 0;
            hasNum = false;
        } else { // 处理符号或等号
            if (hasNum) { // 如果有待处理的数字,它是常数项
                constant += num * sign * side;
                num = 0;
                hasNum = false;
            }
            
            if (c == '+') {
                sign = 1;
            } else if (c == '-') {
                sign = -1;
            } else if (c == '=') {
                side = -1;
                sign = 1; // 等号后符号重置为正
            }
        }
    }
    
    // 处理方程末尾可能剩下的常数
    if (hasNum) {
        constant += num * sign * side;
    }
    
    // 计算解:x = -常数项/系数项
    double solution = -constant / coefficient;
    
    // 输出结果,保留三位小数
    cout << fixed << setprecision(3) << variable << "=" << solution << endl;
    
    return 0;
}

五、总结

该解法通过简洁的变量设计与状态追踪,高效地将方程解析问题转化为字符流处理。利用sign和side的动态变化,巧妙应对不同符号与等式位置的情况,避免了复杂的拆分与重组操作。代码逻辑清晰,时间复杂度O(n),适用于各类一元一次方程的求解场景。

原创内容 转载请注明出处

分享给朋友:

相关文章

力扣746:三步通关最小花费爬楼梯

力扣746:三步通关最小花费爬楼梯

题目解析:站在楼梯的某个台阶时,需要支付当前台阶对应的体力值cost[i],之后可以选择向上爬1或2个台阶。最终目标是到达‌楼层顶部‌(即数组末尾之后的位置),且初始位置可选择下标0或1的台阶作为起点...

力扣第71题:用栈轻松解决Unix路径简化问题

力扣第71题:用栈轻松解决Unix路径简化问题

题目解读:在Unix风格的文件系统中,我们经常需要处理各种复杂的路径表示。给定一个绝对路径字符串,我们需要将其转换为最简化的规范路径。规范路径要求:路径始终以斜杠'/'开头;两个目录名...

力扣540题:线性扫描法如何高效定位唯一数

力扣540题:线性扫描法如何高效定位唯一数

题目重解一个严格递增的有序数组中,除某个元素外,其余每个元素均出现两次。这个看似简单的条件背后隐藏着巧妙的规律——单一元素会打破数组的"成对对称性"。题目要求以O(log n)时间...

2017年 NOIP 提高组 逛公园(洛谷P3953)题解:代码解析与优化

2017年 NOIP 提高组 逛公园(洛谷P3953)题解:代码解析与优化

一、题目解读    2017年NOIP提高组“逛公园”题目(洛谷P3953)要求在有向图中计算从起点到终点满足特定条件的路径数量。题目难点在于处理路径长度限制与...

标题:洛谷B3617题解析:八进制转十六进制算法实现与优化(附AC100代码)

标题:洛谷B3617题解析:八进制转十六进制算法实现与优化(附AC100代码)

一、题目解读洛谷B3617题要求将输入的八进制字符串转换为十六进制表示。题目需处理大数场景,且对输入合法性有明确限制(长度不超过1000,仅包含0-7字符)。由于八进制与十六进制无法直接转换,需借助十...

力扣3112题解法:带时间限制的最短路径问题解析(C++代码)

力扣3112题解法:带时间限制的最短路径问题解析(C++代码)

一、题目解读力扣3112题要求解决带时间限制的最短路径问题:给定一个有向图,节点具有消失时间,需计算从起点到各节点的最短路径,且路径总时间不能超过节点的消失时间。题目难点在于需在传统最短路径算法(如D...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。