当前位置:首页 > 入门组 > CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析

12小时前

CSP-J方格取数题解|动态规划解法|洛谷P7074代码解析 CSP-J 方格取数 动态规划 洛谷P7074 算法题解 第1张

一、题目解读

题目要求在一个n×m的网格中,从左上角到右下角选择一条路径,路径上的数字可重复取用,求取数之和的最大值。路径限制为仅能向右或向下移动。需注意路径的灵活性与重复取数的可能性,传统单向动态规划难以直接适用,需设计双向状态转移策略。

二、解题思路

1. 动态规划核心:设计二维状态dp[i][j][k],k=0表示从上方到达(i,j)的最大和,k=1表示从下方到达。

2. 双向处理:先从上到下计算每一列的“从上到达”状态,再从下到上计算“从下到达”状态,利用左右方向的可达性扩展路径。

3. 边界优化:首列仅能从上方转移,末行仅能从下方转移,避免无效计算。

4. 状态转移方程

    从上到达:dp[i][j][0] = max(dp[i][j-1][0], dp[i][j-1][1]) + grid[i][j](左方或下方转移)

    从下到达:dp[i][j][1] = max(dp[i][j-1][0], dp[i][j-1][1], dp[i+1][j][1]) + grid[i][j](左方或上方转移)

三、解题步骤

1. 输入与初始化:

    读入网格尺寸n×m及数值矩阵grid。

    初始化起点:dp[0][0][0] = dp[0][0][1] = grid[0][0],即双向路径均从原点开始。

2. 首列处理:仅能从上方转移,递推公式:dp[i][0][0] = dp[i][0][1] = dp[i-1][0][0] + grid[i][0]。

3. 主体动态规划:

    外层循环按列遍历(j=1→m-1)。

    内层循环分为两部分:

    从上到下计算dp[i][j][0],利用左方或下方状态转移。

    从下到上计算dp[i][j][1],利用左方或上方状态转移。

4. 输出结果:最终答案取右下角两种状态的最大值:max(dp[n-1][m-1][0], dp[n-1][m-1][1])。

四、代码与注释

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

const int INF = 1e9;  // 定义正无穷边界

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);  // 加速IO

    int n, m;
    cin >> n >> m;  // 输入网格尺寸

    vector<vector<int>> grid(n, vector<int>(m));  // 存储网格数值
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            cin >> grid[i][j];
        }
    }

    // dp[i][j][0] 表示从上方到达(i,j)的最大和
    // dp[i][j][1] 表示从下方到达(i,j)的最大和
    vector<vector<vector<long long>>> dp(n, vector<vector<long long>>(m, vector<long long>(2, -INF)));  // 初始化状态数组(双向)

    // 初始化起点
    dp[0][0][0] = dp[0][0][1] = grid[0][0];  // 双向路径均从原点开始

    // 处理第一列,只能从上方来
    for (int i = 1; i < n; ++i) {
        dp[i][0][0] = dp[i][0][1] = dp[i-1][0][0] + grid[i][0];  // 首列仅依赖上方状态
    }

    // 动态规划处理
    for (int j = 1; j < m; ++j) {  // 按列遍历
        // 从上到下处理当前列
        for (int i = 0; i < n; ++i) {
            // 可以从左边来
            if (i == 0) {  // 边界情况:第一行仅依赖左方
                dp[i][j][0] = max(dp[i][j-1][0], dp[i][j-1][1]) + grid[i][j];
            } else {  // 一般情况:综合左方或下方状态
                dp[i][j][0] = max({dp[i][j-1][0], dp[i][j-1][1], dp[i-1][j][0]}) + grid[i][j];
            }
        }

        // 从下到上处理当前列
        for (int i = n-1; i >= 0; --i) {
            // 可以从左边来
            if (i == n-1) {  // 边界情况:末行仅依赖左方
                dp[i][j][1] = max(dp[i][j-1][0], dp[i][j-1][1]) + grid[i][j];
            } else {  // 一般情况:综合左方或上方状态
                dp[i][j][1] = max({dp[i][j-1][0], dp[i][j-1][1], dp[i+1][j][1]}) + grid[i][j];
            }
        }
    }

    cout << max(dp[n-1][m-1][0], dp[n-1][m-1][1]) << endl;  // 输出终点状态最大值

    return 0;
}

五、总结

1. 关键点:通过双向动态规划打破传统单向路径限制,利用状态分离实现灵活取数。

2. 优化技巧:

    利用边界特性(首列/末行)减少无效计算。

    使用max({})语法简化多值比较,提升代码可读性。

3. 扩展思考:若允许斜向移动,需设计更高维状态,或采用图论算法求解。

该解法通过清晰的逻辑与高效的状态设计,为类似路径规划问题提供了优秀范例。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣740.删除并获得点数 预处理与动态规划的巧妙融合

力扣740.删除并获得点数 预处理与动态规划的巧妙融合

题意解析:给定一组数字,每当你选择一个数字x时,所有等于x-1和x+1的数字都会被自动移除。你需要通过巧妙的选择顺序,最大化获得的点数总和。这个问题可以转化为对离散化数字分布的动态规划问题——将相邻数...

力扣5:中心扩散法 轻松破解最长回文子串

力扣5:中心扩散法 轻松破解最长回文子串

题目解读:在一个给定的字符串中,我们需要找到最长的回文子串。回文是指正读反读都相同的字符串,如"aba"、"abba"都是回文。这个问题看似简单,但要在字符串中...

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

牛客DP41精讲:当背包必须装满时,你的状态转移方程该如何调整?

题目重解我们面对一个经典背包问题的变体:给定n个物品,每个物品有重量w和价值v,背包容量为V。需要回答两个问题:1) 普通情况下能获得的最大价值;2) 必须恰好装满背包时的最大价值(若无法装满则输出0...

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

GESP2023年六级真题解析:动态规划解决小杨买饮料问题(洛谷3873)

一、题目解读小杨买饮料是GESP 2023年六级认证考试中的一道经典动态规划题目,考察学生对背包问题的理解和应用能力。题目描述小杨需要购买n种饮料,每种饮料有特定的体积w和价格v,他要在不超过容量l的...

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

2024年GESP五级武器强化(洛谷B4071)解题代码C++版

一、题目解读    2024年GESP(青少年软件编程能力等级考试)五级中的“武器强化”(洛谷平台题目编号B4071)是一道典型的算法优化问题。题目要求通过合理...

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

一、题目解读2019年CSP-J的“纪念品”问题(对应洛谷P5662)要求玩家在T天内通过买卖纪念品最大化金币收益。每天可交易N种商品,需计算最优策略下的最终金币数。题目强调动态规划思维与资源分配优化...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。