当前位置:首页 > 力扣 > 力扣450题:删除二叉搜索树中的节点 - 递归解法详解

力扣450题:删除二叉搜索树中的节点 - 递归解法详解

3个月前 (06-06)

力扣450题:删除二叉搜索树中的节点 - 递归解法详解  BST操作 递归算法 数据结构实现 算法面试题解 二叉搜索树维护 第1张

内容简介

本文详细解析了力扣450题"删除二叉搜索树中的节点"的递归解法。通过递归遍历二叉搜索并根据不同情况处理节点删除操作,实现了BST节点的精确删除。文章包含完整注释代码、算法思路讲解和复杂度分析,帮助读者掌握二叉搜索树操作的核心技巧。


算法思路

一、查找节点‌:根据BST性质递归查找目标节点

‌二、删除情况处理‌:

    1.无子节点:直接删除

    2.只有左/右子树:用子树替代当前节点

    3.有两个子节点:用右子树最小节点替代当前节点

‌三、递归调整‌:递归处理子树删除后的结构调整


代码实现(带详细注释)

class Solution {
public:
    // 查找子树最小节点(最左节点)
    TreeNode* minnode(TreeNode* root) {
        if(!root || !root->left) return root;  // 终止条件:无左子节点
        return minnode(root->left);            // 递归查找左子树
    }
    
    // 删除BST节点的递归函数
    TreeNode* deleteNode(TreeNode* root, int key) {
        if(!root) return nullptr;  // 空树直接返回
        
        // 查找目标节点
        if(key < root->val) {
            root->left = deleteNode(root->left, key);  // 在左子树查找
        } 
        else if(key > root->val) {
            root->right = deleteNode(root->right, key); // 在右子树查找
        } 
        else {  // 找到目标节点
            // 情况1:无子节点或仅有一个子节点
            if(!root->right) return root->left;  // 只有左子树
            if(!root->left) return root->right;  // 只有右子树
            
            // 情况2:有两个子节点
            TreeNode* minRight = minnode(root->right);  // 找到右子树最小节点
            root->val = minRight->val;  // 用最小节点值替换当前节点
            root->right = deleteNode(root->right, minRight->val);  // 删除右子树中的最小节点
        }
        return root;  // 返回调整后的子树根节点
    }
};

复杂度分析

‌时间复杂度‌:O(h),h为树的高度

最坏情况(树退化为链表):O(n)

平衡BST情况:O(log n)

‌空间复杂度‌:O(h),递归空间


优化方向

迭代实现‌:可以改用栈或指针操作消除递归

‌平衡优化‌:删除后检查并维护BST平衡性

‌错误处理‌:添加对无效输入的检查


总结

BST节点删除是二叉树操作的重要问题,通过递归处理不同删除情况,可以高效维护BST的结构特性。理解这种解法有助于掌握BST的核心操作和递归算法的应用技巧。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣225题:用队列实现栈 - 双队列解法详解

力扣225题:用队列实现栈 - 双队列解法详解

内容简介本文详细解析了力扣225题"用队列实现栈"的双队列解法。通过两个队列的巧妙配合,实现了栈的后进先出(LIFO)特性。文章包含完整注释代码、算法思路讲解和复杂度分析,帮助读者...

【牛客233052题解析】二叉树最大路径和:动态规划与递归算法详解

【牛客233052题解析】二叉树最大路径和:动态规划与递归算法详解

一、题目解读牛客233052题要求构建一棵二叉树,并计算其中任意路径节点值之和的最大值。题目输入包含两个数组:values(节点值)和parents(父节点索引),需根据这些信息构建树结构,并求解最大...

(2017蓝桥杯省A)洛谷P8650题解:递归解析正则表达式并求解最大长度

(2017蓝桥杯省A)洛谷P8650题解:递归解析正则表达式并求解最大长度

一、题目解读洛谷P8650题要求解析由‘x’、‘|’和括号组成的表达式,计算并输出其最大长度。题目核心在于处理嵌套括号与‘|’分隔的项。二、解题思路使用递归策略:1. 解析因子:识别单个‘x’或括号表...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。