当前位置:首页 > 洛谷 > 洛谷2112题:用动态规划思想解决字符串分割

洛谷2112题:用动态规划思想解决字符串分割

2个月前 (08-19)

洛谷2112题:用动态规划思想解决字符串分割 前缀和 字符串 动态规划 洛谷题解 C++ 第1张

一、题目解读

洛谷P2112题要求将N个字符串分割为K行,使各行字符总数方差最小。输入包含N个字符串及目标行数K,需输出最小方差除以K的数值(保留一位小数)。题目难点在于高效计算分割方案,需平衡时间复杂度与精度要求。

二、解题思路

动态规划(DP)求解。核心思想:将问题拆解为“前i个字符串分成j行的最小方差”,利用前缀和优化累计字符数计算,通过状态转移方程递归求解最优解。关键步骤包括预处理、DP状态定义与转移、方差计算。

三、解题步骤

1. 输入与边界处理:读取N、K及字符串长度,若N=0、K=0或K>N直接输出0。

2. 前缀和预处理:构建prefix数组,存储前i个字符串的总长度,减少重复计算。

3. 动态规划初始化:定义dp[i][j]为前i个字符串分成j行的最小方差,初始化dp[0][0]=0。

4. 状态转移:外层循环i遍历字符串数,内层循环j遍历行数,通过k(分割点)枚举子问题,计算当前行字符总数与平均值的偏差平方,更新dp[i][j]=min(dp[k][j-1]+var)。

5. 输出结果:最终解为dp[N][K],除以K并格式化输出。

四、代码与注释

#include <iostream>
#include <vector>
#include <cmath>
#include <climits>
#include <iomanip>
#include <algorithm>
using namespace std;

const double INF = 1e18; // 定义无穷大,用于初始化DP值

int main() {
    int N, K;
    cin >> N >> K;
    
    // 处理特殊情况
    if (N == 0 || K == 0 || K > N) {
        cout << "0.0" << endl;
        return 0;
    }
    
    vector<int> lens(N); // 存储各字符串长度
    for (int i = 0; i < N; ++i) {
        string s;
        cin >> s;
        lens[i] = s.size();
    }
    
    vector<int> prefix(N+1, 0); // 前缀和数组
    for (int i = 1; i <= N; ++i) {
        prefix[i] = prefix[i-1] + lens[i-1];
    }
    
    // dp[i][j]: 前i个单词分成j行的最小方差和
    vector<vector<double>> dp(N+1, vector<double>(K+1, INF));
    dp[0][0] = 0;
    
    double avg = (double)prefix[N] / K; // 总字符数的平均值
    
    for (int i = 1; i <= N; ++i) {
        for (int j = 1; j <= min(K, i); ++j) {
            for (int k = j-1; k < i; ++k) {
                int sum = prefix[i] - prefix[k]; // 当前行字符总数
                double var = pow(sum - avg, 2); // 方差计算
                dp[i][j] = min(dp[i][j], dp[k][j-1] + var); // 状态转移
            }
        }
    }
    
    cout << fixed << setprecision(1) << dp[N][K]/K << endl; // 输出结果,保留1位小数
    return 0;
}

五、总结

1. 算法核心:动态规划通过子问题最优解推导全局最优,结合前缀和降低时间复杂度。

2. 优化点:状态转移方程的三层循环可通过斜率优化等方法进一步提速,但本题数据范围允许朴素DP。

3. 实际应用:适用于需要平衡分组差异的场景,如资源分配、任务调度等。

4. 注意事项:边界条件(如K>N)需提前判断,方差计算需注意浮点数精度。


原创内容 转载请注明出处

分享给朋友:

相关文章

力扣70题:告别暴力递归!从零实现记忆化搜索解法

力扣70题:告别暴力递归!从零实现记忆化搜索解法

题意解析:想象你站在楼梯底部,面前有n级台阶。每次你可以选择跨1级或2级台阶,最终到达顶端的路径有多少种不同的走法?这个问题本质上是在探索分叉决策的叠加效果——当我们把每个台阶处的选择看作二叉树的分支...

用栈结构优雅破解括号匹配难题(力扣20题)

用栈结构优雅破解括号匹配难题(力扣20题)

一、题目重新解读给定一个仅包含 ('、')、'['、']'、'{'、'}' 的字符串,判断其是否有效。有效需满足:1....

力扣第1991题:寻找数组的中心索引 如何找到左右和相等的中心索引

力扣第1991题:寻找数组的中心索引 如何找到左右和相等的中心索引

题目解读给定一个整数数组,我们需要找到一个中心索引,使得该索引左侧所有元素的和等于右侧所有元素的和。如果不存在这样的索引,则返回-1。中心索引的定义不包含在左右两侧的和计算中。这个问题考察对数组遍历和...

力扣933题:队列的妙用:如何高效统计最近请求

力扣933题:队列的妙用:如何高效统计最近请求

题目重解:我们需要设计一个能统计最近3000毫秒内请求次数的系统。每当新的请求到来时,它会带有时间戳t,我们需要返回过去3000毫秒内(包括当前)发生的请求总数。这就像是在时间轴上维护一个滑动窗口,只...

力扣540题:线性扫描法如何高效定位唯一数

力扣540题:线性扫描法如何高效定位唯一数

题目重解一个严格递增的有序数组中,除某个元素外,其余每个元素均出现两次。这个看似简单的条件背后隐藏着巧妙的规律——单一元素会打破数组的"成对对称性"。题目要求以O(log n)时间...

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

CSP-J 2019纪念品题解(洛谷P5662):动态规划+完全背包问题的实战应用

一、题目解读2019年CSP-J的“纪念品”问题(对应洛谷P5662)要求玩家在T天内通过买卖纪念品最大化金币收益。每天可交易N种商品,需计算最优策略下的最终金币数。题目强调动态规划思维与资源分配优化...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。